Путь эволюции от простейших одноклеточных. Как организмы совершили переход от одноклеточной формы жизни и к чему это привело. Эволюция жизни на Земле. Одноклеточные организмы

04.11.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Биологам развития давно известен ген Brachyury , продукт которого регулирует у животных развитие первичного эмбрионального рта (бластопора), среднего зародышевого листка (мезодермы), а у представителей типа хордовых - хорды. Долгое время считалось, что ни у кого, кроме многоклеточных животных, гена Brachyury нет. Но теперь известно, что этот ген есть у многих одноклеточных организмов и грибов; по-видимому, наличие генов, подобных Brachyury , является общим уникальным признаком эволюционной ветви заднежгутиковых (Opisthokonta), к которой относятся многоклеточные животные, грибы и их одноклеточные родственники. Причем функция этого гена очень стабильна: экспериментально показано, что продукт гена Brachyury , взятый от амебы Capsaspora , способен участвовать в развитии лягушки.

«Регуляция транскрипции - центральный аспект развития животных» . Такой фразой начинается новая статья об эволюции регуляторных генов, среди авторов которой - известный испанский протистолог Иньяки Руис-Трильо (Iñaki Ruiz-Trillo). Действительно, развитие организма животного непосредственно управляется генами на всех стадиях, кроме самых ранних (см.: Нужны ли эмбрионам гены? , «Элементы», 08.05.2007). Транскрипция - это синтез продукта гена (информационной РНК, на основе которой потом синтезируется белок). Проще говоря, когда ген транскрибируется, он включен, когда нет - выключен. В каждой клетке есть продукты генов, которые в ней «включены», и нет (как правило) продуктов генов, которые в ней «выключены»; этим, собственно, и определяются различия между клетками в многоклеточном организме.

Проблема в том, что продуктов разных генов для развития целого животного нужно очень много. Включить все эти гены сразу нельзя. Они последовательно включают друг друга, действуя через свои конечные продукты - белки (рис. 2).

Таким образом, чтобы узнать, как устроено чье-то индивидуальное развитие, надо в первую очередь узнать, как в нем включаются и выключаются гены. По крайней мере, такая точка зрения сейчас весьма распространена; именно ее и выражает процитированная фраза из статьи. Хорошо это или плохо, но современная биология развития животных очень «геноцентрична»: зачастую в ней всё развитие рассматривается как последовательность взаимосвязанных актов транскрипции.

Белок, функцией которого является включение или выключение генов, обычно называют фактором транскрипции . Гены - это участки молекулы ДНК, поэтому белок - фактор транскрипции должен «уметь» связываться с ДНК. Для этого служит специальный участок белковой молекулы - ДНК-связывающий домен (DNA-binding domain).

Есть разные типы ДНК-связывающих доменов. Самый широко известный из них называется гомеодоменом ; это - специфический участок из 60 аминокислот, присутствующий во многих регуляторных белках и у животных, и у растений. Гены, кодирующие гомеодомен-содержащие белки, называются гомеобоксными (гомеобокс - это участок гена, который кодирует гомеодомен). К гомеобоксным генам относится много разных генов, регулирующих через свои продукты эмбриональное развитие организмов, в том числе и распространенные у животных Hox-гены (см., например: Новое в науке о знаменитых Hox-генах, регуляторах развития , «Элементы», 10.10.2006).

Другой важный тип ДНК-связывающего домена называется T-бокс (T-box). Это участок белка, состоящий из 180–200 аминокислот, который тоже «умеет» специфически связываться с ДНК, хотя и делает это иначе, чем гомеодомен. Гены, кодирующие белки с T-боксом, так и называют Т-боксными (см., например: Naiche et al., 2005. T-box genes in vertebrate development). Эти гены свойственны животным. Их продукты принимают участие в регуляции развития сердца, конечностей, мозга и многих других органов.

Особое внимание эволюционных биологов уже давно привлек Т-боксный ген, который называется Brachyury . Области активности этого гена находятся, во-первых, вокруг первичного эмбрионального рта (бластопора) и, во-вторых, в среднем слое зародышевых клеток (мезодерме), причем в основном в тех частях мезодермы, из которых возникают осевой скелет, мускулатура и стенки целома - вторичной полости тела. А поскольку этот ген есть у самых разных животных, то между ними возможны интересные сравнения. Например, данные о работе гена Brachyury у коралловых полипов подтверждают так называемую энтероцельную теорию происхождения целома, согласно которой целомические полости высших многоклеточных эволюционно возникли из выростов кишечника (см.: Technau, Scholtz, 2003. Origin and evolution of endoderm and mesoderm).

Ген Brachyury исключительно важен для развития самой древней части скелета позвоночных - хорды . Последняя далеко не у всех позвоночных сохраняется во взрослом состоянии, но у зародышей есть обязательно; без хорды не могут нормально развиться ни мозг, ни позвоночник. Кроме того, у человека иногда встречается опухоль, состоящая из хордоподобной ткани, - хордома . В клетках хордомы ген Brachyury активен, как в клетках зародышевой хорды; причем это выражено настолько хорошо, что является для данного типа опухоли диагностическим маркером.

Все перечисленные функции Т-боксных генов относятся только к многоклеточным животным и ни для кого другого не имеют смысла. Действительно, у одноклеточных нет ни сердца, ни конечностей, ни мозга, ни рта, ни целома, ни хорды. Регулировать с помощью этих генов там вроде бы нечего. Для исследователей было вполне естественно предположить, что Т-боксные гены, как и многие другие гены с подобными функциями, возникли приблизительно одновременно с многоклеточностью. У самых примитивных многоклеточных животных - губок - они уже есть.

Однако три года назад, в 2010 году, Т-боксный ген был обнаружен у амебы Capsaspora owczarzaki (рис. 1), которая является одноклеточным организмом и к животным никак не принадлежит. И примерно тогда же выяснилось, что Т-боксные гены есть у некоторых грибов. Итак, эти гены для многоклеточных животных не уникальны. Но у кого же все-таки они есть, а у кого нет?

Чтобы разобраться в этом, группа исследователей из Испании, США и Канады предприняла поиск по всем описанным геномам (наборам генов) и транскриптомам (наборам продуктов генов) растений, грибов, жгутиконосцев и всех других эукариот, то есть организмов с клеточными ядрами. Результаты оказались следующими:

1. Т-боксные гены и их белки есть у некоторых амеб и у большинства известных представителей группы Mesomycetozoea, состоящей из имеющих сложные жизненные циклы амебообразных родственников животных (см.: Ядра мезомицетозоев делятся синхронно, как у зародышей животных , «Элементы», 05.06.2013). Также эти гены есть у многих грибов, хотя и не у всех.

2. У воротничковых жгутиконосцев (Choanoflagellata), которые считаются ближайшими одноклеточными родственниками животных, T-боксных генов нет. Также их нет у высших грибов (Dikarya), к которым относятся, в частности, хорошо нам знакомые шляпочные грибы.

3. Все без исключения организмы, у которых найдены T-боксные гены, принадлежат к группе заднежгутиковых (Opisthokonta). Это огромная ветвь эукариот, к которой относятся многоклеточные животные, воротничковые жгутиконосцы, мезомицетозои, грибы и некоторые амебы. У «не-заднежгутиковых» эукариот (например, у растений) найти Т-боксные гены не удалось. Видимо, это общий и уникальный признак группы Opisthokonta.

4. Из положения воротничковых жгутиконосцев и высших грибов на эволюционном древе следует, что эти группы, скорее всего, когда-то тоже имели Т-боксные гены, но потом потеряли их (рис. 3).

Более того, и у мезомицетозоев, и у амебы Capsaspora Т-боксных генов уже несколько - как у многоклеточных животных (рис. 3). Здесь эволюция успела зайти достаточно далеко: на основе одного гена возникло целое генное семейство. Интересно, что по этому признаку мезомицетозои и Capsaspora оказываются гораздо ближе к многоклеточным животным, чем воротничковые жгутиконосцы, которые традиционно считаются их ближайшими родственниками или даже предками.

А самым древним T-боксным геном оказался тот самый ген Brachyury , продукт которого регулирует у животных развитие бластопора и мезодермы. Он есть у всех, у кого вообще есть хоть какие-то Т-боксные гены. Если у кого-то (у плесневого гриба, например) Т-боксный ген всего один, то это ген Brachyury . Все остальные Т-боксные гены эволюционно произошли именно от него.

Изменилась ли функция этого гена на эволюционном пути от одноклеточных существ до животных? В Институте эволюционной биологии в Барселоне (Institut de Biologia Evolutiva , IBE) решили проверить это экспериментально. Для исследования были взяты два организма: уже упомянутая амеба Capsaspora owczarzaki и давний, заслуженный объект биологии развития - шпорцевая лягушка Xenopus laevis .

Сначала действие гена Brachyury в зародыше лягушки заблокировали методом искусственной РНК-интерференции . Это привело к вполне ожидаемому результату: процесс образования мезодермы у лягушки нарушился, осевые мышцы оказались недоразвиты. Но если вовремя ввести в такой зародыш информационную РНК Brachyury , полученную от капсаспоры, эти нарушения частично компенсируются (рис. 4). Продукты генов Brachyury капсаспоры и лягушки настолько близки по структуре, что являются взаимозаменяемыми! Такая консервативность функции регуляторного гена - от амебы до позвоночного животного - даже на фоне наших современных знаний выглядит выдающейся. Особенно если учесть, что общий предок капсаспоры и лягушки, от которого оба унаследовали ген Brachyury , жил, скорее всего, более миллиарда лет назад (см.: Parfrey et al., 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks).

Вместе с тем нельзя сказать, что функции Т-боксных генов у одноклеточных организмов и у многоклеточных животных совершенно одинаковы. Например, у лягушки продукт гена Brachyury оказывает сильное активирующее действие на ген Wnt11 , гораздо более слабое - на ген Sox17 и вовсе не влияет на ген chordin (который, однако, активируется продуктом другого Т-боксного гена). А вот если ввести лягушке продукт гена Brachyury , полученный от капсаспоры, то выясняется, что он одинаково действует на все три гена-мишени: специфичность здесь еще не выработалась, и разделение функций не произошло. Механизмы действия Т-боксных генов не даны раз навсегда: они эволюционируют, просто очень медленно. В эволюции животных наглядно видно, как возникающие в этом семействе новые гены «делят» разные функции между собой.

Итак, ген Brachyury - это один из самых древних генов, регулирующих развитие многоклеточных животных (см., например: Hox-гены оказались более эволюционно изменчивы, чем предполагалось раньше , «Элементы», 12.10.2013). Этому гену больше миллиарда лет. Остается открытым очень интересный вопрос: на какие же, собственно, физиологические процессы может влиять у амеб и у грибов ген, который у позвоночных животных (к примеру) ответственен за развитие хорды и осевых мышц? Вероятно, скоро мы это узнаем.

Цели урока:

  1. ознакомить учащихся с особенностями строения глаза и установить взаимосвязь между его строением и выполняемыми функциями;
  2. показать многообразие органов зрения и особенности их строения;
  3. показать принципиальное единство естественных наук;
  4. способствовать развитию формирования умений и навыков работы с учебником, дополнительной литературой, компьютером;
  5. ознакомиться с процессами, обеспечивающими восприятие зрительных образов, наиболее распространенными дефектами зрения – близорукостью и дальнозоркостью;
  6. защита рефератов в электронном виде.

Оборудование: фотоаппарат и его модель, модель глаза, таблицы «Зрительный анализатор», компьютер, мультимедийный проектор.

В современном мире вы получаете информацию новыми путями: через компьютер, Интернет. Эта информация усваивается лучше и является дополнением к традиционным методам. Не случайно говорят: «Лучше один раз увидеть, чем сто раз услышать».

УЧИТЕЛЬ БИОЛОГИИ: Вашему вниманию предоставляется презентация «Зрительный анализатор беспозвоночных» , сделанная первой группой.

Мы увидели, что зрительный анализатор усложняется не только у одноклеточных, но и у позвоночных. При одинаковой схеме устройства глаза имеется много различий, связанных экологическими особенностями вида.

УЧИТЕЛЬ БИОЛОГИИ: Благодаря органу зрения мы видим всю палитру красок, любуемся природой, и все это потому, что особые светочувствительные клетки глаза, колбочки, обеспечивают цветное зрение. Все многообразие слагается из трех цветов: красного, зеленого и фиолетового. Каждый из этих цветов поглощает волны разного диапазона и смешивание их дает все остальные цвета. Презентация №3: «Цветоощущение» .

УЧИТЕЛЬ ФИЗИКИ: В современном мире людей с дефектами зрения значительно больше и приобретаются эти дефекты значительно быстрее, чем даже 10 лет назад. Причина этому и компьютер, и телевизор и игровые приставки и т.д. Итак, вы поняли, что следующая презентация «Дефекты зрения» и как их предупредить.

УЧИТЕЛЬ ФИЗИКИ: Дальтон сказал: «Если на клетке с тигром увидишь «лев»- не верь глазам своим!» Так как «Не глазом, а посредством глаза, смотреть на мир умеет разум…» Об оптических иллюзиях последнее сообщение. Презентация №5: «Иллюзии» .

УЧИТЕЛЬ БИОЛОГИИ: Поразительно, но человек часто не ценит то, что ему дано природой. Сделанные вашими одноклассниками сообщения еще раз доказывают, что глаз - сложнейшая оптическая система, и она не всегда бывает совершенной. Ее нарушают масса врожденных, приобретенных и возрастных изменений, которые требуют своевременной коррекции и лечения. Зрение наше богатство, к которому надо бережно относиться с раннего детства.

Использованная литература:

  • Энциклопедия «Наука», РОСМЭН, 2000
  • Биология, 9 класс, Батуев А.С., ДРОФА, 1996
  • Зрительный анализатор: от одноклеточных до человека, Г.Н. Тихонова, Н.Ю.Феоктистова, Библиотечка «Первого сентября», 2006
  • Энциклопедия «Все обо всем» для детей
  • Книга для чтения по анатомии, физиологии и гигиене человека, И.Д. Зверев, ПРОСВЕЩЕНИЕ, 1983
  • Энциклопедия для детей. Биология, т.2, АВАНТА +, 1994
  • Энциклопедия для детей. Физика. АВАНТА +, 1994
  • Биология. Поурочные планы по учебнику Н.И. Сонина и М.Р. Сапина, 8 класс, УЧИТЕЛЬ, 2007

Животные, состоящие из единственной клетки, располагающей ядром, называются одноклеточными организмами.

В них сочетаются характерные особенности клетки и независимого организма.

Одноклеточные животные

Животные подцарства Одноклеточных или Простейших обитают в жидких средах. Внешние формы их разнообразны — от аморфных особей, не имеющих определенных очертаний, до представителей со сложными геометрическими формами.

Насчитывается около 40 тысяч видов одноклеточных животных. К наиболее известным относятся:

  • амеба;
  • зеленая эвглена;
  • инфузория-туфелька.

Амеба

Принадлежит классу корненожки и отличается непостоянной формой.

Она состоит из оболочки, цитоплазмы, сократительной вакуоли и ядра.

Усвоение питательных веществ осуществляется с помощью пищеварительной вакуоли, а кормом служат другие простейшие, такие как водоросли и . Для респирации амебе необходим кислород, растворенный в воде и проникающий через поверхность тела.

Зеленая эвглена

Обладает вытянутой веерообразной формой. Питается за счет превращения углекислого газа и воды в кислород и продукты питания благодаря световой энергии, а также готовыми органическими веществами при отсутствии света.

Относится к классу жгутиковые.

Инфузория-туфелька

Класс инфузории, своими очертаниями напоминает туфельку.

Пищей служат бактерии.

Одноклеточные грибы

Грибы отнесены к низшим бесхлорофилльным эукариотам. Они отличаются наружным пищеварением и содержанием хитина в клеточной стенке. Тело образует грибницу, состоящую из гифов.

Одноклеточные грибы систематизированы в 4 основных классах:

  • дейтеромицеты;
  • хитридиомицеты;
  • зигомицеты;
  • аскомицеты.

Ярким примером аскомицетов служат дрожжи, широко распространенные в природе. Скорость их роста и размножения велика благодаря особенному строению. Дрожжи состоят из одиночной клетки округлой формы, размножающейся почкованием.

Одноклеточные растения

Типичным представителем низших одноклеточных растений, часто встречающихся в природе, являются водоросли:

  • хламидомонада;
  • хлорелла;
  • спирогира;
  • хлорококк;
  • вольвокс.

Хламидомонада отличается от всех водорослей подвижностью и наличием светочувствительного глазка, определяющего места наибольшего скопления солнечной энергии для фотосинтеза .

Многочисленные хлоропласты заменены одним большим хроматофором. Роль насосов, откачивающих излишки жидкости, выполняют сократительные вакуоли. Передвижение осуществляется при помощи двух жгутиков.

Зеленые водоросли хлореллы, в отличие от хламидомонады, обладают типичными растительными клетками. Плотная оболочка защищает мембрану, а в цитоплазме расположено ядро и хроматофор. Функции хроматофора сходны с ролью хлоропласт наземных растений.

С хлореллой схожа водоросль шарообразной формы хлорококк. Местом ее обитания служит не только вода, но и суша, стволы деревьев, растущих во влажной среде.

Кто открыл одноклеточные организмы

Честь открытия микроорганизмов принадлежит голландскому ученому А. Левенгуку.

В 1675 году он разглядел их в микроскоп собственного изготовления. За мельчайшими существами закрепилось название инфузория, а с 1820 года их стали называть простейшими животными.

Зоологами Келлекером и Зибольдом в 1845 году одноклеточные были отнесены к особому типу животного царства и разделены на две группы:

  • корненожки;
  • инфузории.

Как выглядит клетка одноклеточного животного

Строение одноклеточных организмов возможно изучить лишь с помощью микроскопа. Тело простейших существ состоит из единственной клетки, выполняющей роль независимого организма.

В состав клетки входят:

  • цитоплазма;
  • органоиды;
  • ядро.

Со временем, в результате приспособления к окружающей среде, у отдельных видов одноклеточных появились специальные органоиды движения, выделения и питания.

Кто такие простейшие

Современная биология относит простейших к парафилетической группе животноподобных протистов. Наличие в клетке ядра, в отличие от бактерий, включает их в список эукариотов.

Клеточные структуры разнятся с клетками многоклеточных. В живой системе простейших присутствуют пищеварительные и сократительные вакуоли, у некоторых наблюдаются схожие с ротовой полостью и анальным отверстием органеллы.

Классы простейших

В современной классификации по признакам отсутствует отдельный ранг и значение одноклеточных.

Лабиринтула

Их принято подразделять на следующие типы:

  • саркомастигофоры;
  • апикомплексы;
  • миксоспоридии;
  • инфузории;
  • лабиринтулы;
  • асцестоспородии.

Устаревшей классификацией считается деление простейших на жгутиковых, саркодовых, ресничных и споровиков.

В каких средах обитают одноклеточные

Средой обитания простейших одноклеточных служит любая влажная среда. Амеба обыкновенная, эвглена зеленая и инфузория-туфелька являются типичными обитателями загрязненных пресных водных источников.

Наука долгое время относила опалин к инфузориям, благодаря внешнему сходству жгутиков с ресничками и наличию двух ядер. В результате тщательных исследований родство было опровергнуто. Половое размножение опалин происходит в результате копуляции, ядра одинаковые, а ресничный аппарат отсутствует.

Заключение

Биологическую систему невозможно представить без одноклеточных организмов, являющихся источником питания других животных.

Простейшие организмы способствуют образованию горных пород, служат показателями загрязненности водоемов, участвуют в круговороте углерода . Широкое применение микроорганизмы нашли в биотехнологиях.

Чтобы ответить на этот вопрос необходимо установить когда и откуда взялась первая эукриотическая клетка, определить наиболее примитивную группу простейших, определить наиболее высоко организованную группу простейших.

Эукариотическая клетка могла произойти только из прокариотической. первая эукриотическая клетка возникла 1,5 млд лет назад (середина архейской эры).Существует ряд гипотез, объясняющих как из прокариотической клетки, обладающей мин. набором структур для жизни-ти возникает крупная сложная, обладающая большим кол-вом структурных органоидов эукариотическая клетка.

1 гипотеза – эволютивная, согласно которой простая прокариотическая клетка росла,усложнялась и путем длительной эволюции приобрела те компоненты,которые присущи эукариотической клетке.

2 гипотеза - симбиотическая или гипотеза симбиогинеза, согласно этой гипотезе произошло объединение нескольких прокариотических клеток. Например, некий фотосинтезирующий прокариотический организм внедрился в более крупную прокариотичекую клетку и через какое-то время превратился в хлоропласт. Другой прокариотический организм- гетеротрофный,аэробный превратился в митохондрии.Доказательством этого является тот факт,что хлоропласты и митохондрии обладают собственными молекулами ДНК,РНК, рибосомами и способны к делению.

существуют и другие теории, которые объединяют элементы 1 и 2 гипотезы

Направления эволюции простейших.

1 . Увеличение размеров тела. Большим быть выгодно. Большие размеры тела повышают независимость организмов от факторов окружающей среды, защищенность большого животного выше и абсолютная скорость больше.

2. Увеличение скорости движения. Большая возможность догнать добычу и меньшая возможность быть съеденным

3. Усложнение поведения.

Наиболее высокоорганизованной и продвинутой группой являются инфузории.

В ходе эволюции простейшие сталкиваются с рядом проблем. При увеличении размеров простейшего жгутик не справляется с функцией передвижения крупной клетки. Соответственно необходимо увеличить их количество. (заменить жгутик ресничками). При увеличении размеров, усложнении поведения и внутреннего строения требуется большее количество наследственного материала, т.е. большее количество ядер. Такой процесс, увеличения числа одноименных структур, называется полимеризация. Вслед за полимеризацией возможна дифференцировка-специлизация органелл по функциям. Такое разделение труда более эффективно,поэтому нет большой необходимости большого количества органелл. И вслед за дифференциризацией происходит полигомеризация(уменьшение их числа). Следующая проблема,с которой сталкиваются простейшие- увеличение размеров клетки. Увеличивать размеры клетки до бесконечности нельзя. На пути такого увеличения стоит диффузионный барьер. Диффузионный барьер заключается в том,что при увеличении размеров V клетки увеличивается пропорционально кубу R ,а S пропорциональна квадрату R , и в какой –то момент клетка перестанет функционировать как открытая система,т.е. перестает обмениваться с окружающей средой веществом,энергией и информацией. Одним из способов решения эту проблему является изменение формы тела. Например, у инфузории трубача или инфузории сувойки(прикрепленные формы) . Однако при таких сложных формах тела невозможно или затруднено передвижение. Кроме того это лишь частный случай решения проблемы, не снимающий диффузионный барьер. Другой более перспективный способ преодоления диффузионного барьера -переход к колониальности, важнейшее направление эволюции простейших. Колонии формируются в ходе многократных митотических делений без последующего расхождения клеток,т.е. колония является потомком 1й клетки. По мере увеличения размеров колонии вновь возникает проблема с рецепцией, питанием, движением. Соответственно возникает необходимость разделить функции между отдельными клетками. Возникает дифференцировка. Однако в колониях дифференцировка всегда носит временный характер,т.е. клетка может поменять свою функцию. Таким образом,эволюция колоний шла по пути увеличения размером и дифференцировки клеток.

Жизнь на Земле появилась миллиарды лет назад, и с тех пор живые организмы становились всё сложнее и разнообразнее. Существует множество доказательств того, что всё живое на нашей планете имеет общее происхождение. Хотя механизм эволюции ещё не до конца понятен учёным, сам её факт не подлежит сомнению. В этом посте — о том, какой путь прошло развитие жизни на Земле от самых простейших форм до человека, какими были много миллионов лет назад наши далёкие предки. Итак, от кого же произошёл человек?

Земля возникла 4,6 миллиардов лет назад из газопылевого облака, окружавшего Солнце. В начальный период существования нашей планеты условия на ней были не очень комфортными — в окружающем космическом пространстве летало ещё много обломков, которые постоянно бомбардировали Землю. Считается, что 4,5 млрд лет назад Земля столкнулась с другой планетой, в результате этого столкновения образовалась Луна. Первоначально Луна была очень близко к Земле, но постепенно отдалялась. Из-за частых столкновений в это время поверхность Земли находилась в расплавленном состоянии, имела очень плотную атмосферу, а температура на поверхности превышала 200°C. Через некоторое время поверхность затвердела, образовалась земная кора, появились первые материки и океаны. Возраст самых древних исследованных горных пород составляет 4 миллиарда лет.

1) Древнейший предок. Археи.

Жизнь на Земле появилась, согласно современным представлениям, 3,8-4,1 млрд лет назад (самому раннему из найденных следов бактерий 3,5 млрд лет). Как именно возникла жизнь на Земле, до сих пор надёжно не установлено. Но вероятно, уже 3,5 млрд. лет назад, существовал одноклеточный организм, который имел все черты, присущие всем современным живым организмам и был для всех них общим предком. От этого организма всем его потомкам достались черты строения (все они состоят из клеток, окружённых оболочкой), способ хранения генетического кода (в закрученных двойной спиралью молекулах ДНК), способ хранения энергии (в молекулах АТФ) и т. д. От этого общего предка произошли три основные группы одноклеточных организмов, существующих до сих пор. Сначала разделились между собой бактерии и археи, а затем от архей произошли эукариоты — организмы, клетки которых имеют ядро.

Археи почти не изменились за миллиарды лет эволюции, вероятно примерно так же выглядели и древнейшие предки человека

Хотя археи дали начало эволюции, многие из них дожили до наших дней почти в неизменном виде. И это не удивительно — с древних времён археи сохранили способность выживать в самых экстремальных условиях — при отсутствии кислорода и солнечного света, в агрессивных — кислых, солёных и щелочных средах, при высоких (некоторые виды прекрасно чувствуют себя даже в кипятке) и низких температурах, при высоких давлениях, также они способны питаться самыми разными органическими и неорганическими веществами. Их далёкие высокоорганизованные потомки совсем не могут этим похвастаться.

2) Эукариоты. Жгутиковые.

Длительное время экстремальные условия на планете мешали развитию сложных форм жизни, и на ней безраздельно господствовали бактерии и археи. Примерно 3 млрд. лет назад на Земле появляются цианобактерии. Они начинают использовать процесс фотосинтеза для поглощения углерода из атмосферы, выделяя при этом кислород. Выделяющийся кислород сначала расходуется на окисление горных пород и железа в океане, а затем начинает накапливаться в атмосфере. 2,4 млрд. лет назад происходит «кислородная катастрофа» — резкое повышение содержание кислорода в атмосфере Земли. Это приводит к большим изменениям. Для многих организмов кислород оказывается вреден, и они вымирают, заменяясь такими, которые наоборот, используют кислород для дыхания. Меняется состав атмосферы и климат, становится значительно холоднее из-за падения содержания парниковых газов, но появляется озоновый слой, защищающий Землю от вредного ультрафиолетового излучения.

Примерно 1,7 млрд лет назад от архей произошли эукариоты — одноклеточные организмы, клетки которых имели более сложное строение. Их клетки, в частности, содержали ядро. Впрочем, возникшие эукариоты имели не одного предшественника. Например, митохондрии, важные составляющие клеток всех сложных живых организмов, произошли от свободноживущих бактерий, захваченных древними эукариотами.

Существует много разновидностей одноклеточных эукариот. Считается, что все животные, а значит и человек, произошли от одноклеточных организмов, которые научились передвигаться при помощи жгутика, расположенного сзади клетки. Жгутики также помогают фильтровать воду в поисках пищи.

Хоанофлагеллаты под микроскопом, как полагают учёные, именно от подобных существ некогда произошли все животные

Некоторые виды жгутиковых живут, объединяясь в колонии, считается, что из таких колоний простейших жгутиковых некогда произошли первые многоклеточные животные.

3) Развитие многоклеточных. Билатерии.

Примерно 1,2 млрд. лет назад появляются первые многоклеточные организмы. Но эволюция всё ещё медленно продвигается, вдобавок развитию жизни мешают . Так, 850 млн. лет назад начинается глобальное оледенение. Планета более чем на 200 млн. лет покрывается льдом и снегом.

Точные детали эволюции многоклеточных, к сожалению, неизвестны. Но известно, что через некоторое время первые многоклеточные животные разделились на группы. Дожившие до наших дней без особых изменений губки и пластинчатые не имеют отдельных органов и тканей и отфильтровывают питательные вещества из воды. Ненамного сложнее устроены кишечнополостные, имеющие лишь одну полость и примитивную нервную систему. Все же остальные более развитые животные, от червей до млекопитающих, относятся к группе билатерий, и их отличительным признаком является двусторонняя симметрия тела. Когда появились первые билатерии, доподлинно неизвестно, вероятно это произошло вскоре после окончания глобального оледенения. Формирование двусторонней симметрии и появление первых групп билатеральных животных, вероятно, происходило между 620 и 545 млн. лет назад. Находки ископаемых отпечатков первых билатерий относятся ко времени 558 млн. лет назад.

Кимберелла (отпечаток, внешний вид) — один из первых обнаруженных видов билатерий

Вскоре после своего возникновения билатерии разделяются на первичноротых и вторичноротых. От первичноротых происходят почти все беспозвоночные животные — черви, моллюски, членистоногие и т. д. Эволюция вторичноротых приводит к появлению иглокожих (таких, как морские ежи и звёзды), полухордовых и хордовых (к которым относится и человек).

Недавно в Китае были найдены остатки существ, получивших название Saccorhytus coronarius. Они жили примерно 540 млн. лет назад. По всем признакам это маленькое (размером всего около 1 мм) существо было предком всех вторичноротых животных, а значит, и человека.

Saccorhytus coronarius

4) Появление хордовых. Первые рыбы.

540 млн. лет назад происходит «кембрийский взрыв» — за очень короткий период времени появляется огромное число самых разных видов морских животных. Фауну этого периода удалось хорошо изучить благодаря сланцам Бёрджес в Канаде, где сохранились остатки огромного числа организмов этого периода.

Некоторые из животных кембрийского периода, останки которых найдены в сланцах Бёрджес

В сланцах нашли множество удивительных животных, к сожалению, давно вымерших. Но одной из наиболее интересных находок стало обнаружение останков небольшого животного, получившего название пикайя. Это животное — самый ранний из найденных представителей типа хордовых.

Пикайя (останки, рисунок)

У пикайи были жабры, простейший кишечник и кровеносная система, а также небольшие шупальца возле рта. Это небольшое, размером около 4 см. животное напоминает современных ланцетников.

Появление рыб не заставило себя долго ждать. Первым из найденных животных, которое можно отнести к рыбам, считается хайкоуихтис. Он был ещё меньше пикайи (всего 2,5 см), но у него уже были глаза и головной мозг.

Примерно так выглядел хайкоуихтис

Пикайя и хайкоуихтис появились между 540 и 530 млн. лет назад.

Вслед за ними в морях вскоре появилось множество рыб большего размера.

Первые ископаемые рыбы

5) Эволюция рыб. Панцирные и первые костные рыбы.

Эволюция рыб продолжалась довольно долго, и поначалу они совсем не были доминирующей группой живых существ в морях, как сегодня. Напротив, им приходилось спасаться от таких крупных хищников, как ракоскорпионы. Появились рыбы, у которых голова и часть туловища были защищены панцирем (считается, что череп впоследствии развился из такого панциря).

Первые рыбы были бесчелюстными, вероятно, они питались мелкими организмами и органическими остатками, втягивая и фильтруя воду. Лишь около 430 млн. лет назад появились первые рыбы, имеющие челюсти — плакодермы, или панцирные рыбы. Голова и часть туловища у них была прикрыта костным панцирем, обтянутым кожей.

Древняя панцирная рыба

Некоторые из панцирных рыб приобрели большие размеры и стали вести хищный образ жизни, но дальнейший шаг в эволюции был сделан благодаря появлению костных рыб. Предположительно, от панцирных рыб произошёл общий предок хрящевых и костных рыб, населяющих современные моря, а сами панцирные рыбы, появившиеся примерно в одно с ними время акантоды, а также почти все бесчелюстные рыбы впоследствии вымерли.

Entelognathus primordialis — вероятная промежуточная форма между панцирными и костными рыбами, жил 419 млн. лет назад

Самой первой из обнаруженных костных рыб, а значит, и предком всех сухопутных позвоночных, включая человека, считается живший 415 млн. лет назад Guiyu Oneiros. По сравнению с хищными панцирными рыбами, достигавшими в длину 10 м, эта рыба была небольшой — всего 33 см.

Guiyu Oneiros

6) Рыбы выходят на сушу.

Пока рыбы продолжали эволюционировать в море, растения и животные других классов уже выбрались на сушу (следы присутствия на ней лишайников и членистоногих обнаруживаются ещё 480 млн. лет назад). Но в конце концов освоением суши занялись и рыбы. От первых костных рыб произошли два класса — лучепёрые и лопастопёрые. К лучепёрым относится большинство современных рыб, и они прекрасно приспособлены для жизни в воде. Лопастепёрые, напротив, приспособились к жизни на мелководье и в небольших пресных водоёмах, в результате чего их плавники удлинились, а плавательный пузырь постепенно превратился в примитивные лёгкие. В результате эти рыбы научились дышать воздухом и ползать по суше.

Эвстеноптерон () — одна из ископаемых кистепёрых рыб, которая считается предком сухопутных позвоночных. Эти рыбы жили 385 млн. лет назад и достигали длины 1,8 м.

Eusthenopteron (реконструкция)

— ещё одна кистепёрая рыба, которая считается вероятной промежуточной формой эволюции рыб в земноводных. Она уже могла дышать лёгкими и выползать на сушу.

Panderichthys (реконструкция)

Тиктаалик, найденные останки которого относятся ко времени 375 млн. лет назад, был ещё ближе к земноводным. У него были рёбра и лёгкие, он мог вертеть головой отдельно от туловища.

Тиктаалик (реконструкция)

Одними из первых животных, которых причисляют уже не к рыбам, а к земноводным, стали ихтиостеги. Они жили около 365 млн. лет назад. Эти небольшие животные длиной около метра, хотя уже и имели лапы вместо плавников, всё ещё с трудом могли передвигаться по суше и вели полуводный образ жизни.

Ихтиостега (реконструкция)

На время выхода позвоночных на сушу пришлось очередное массовое вымирание — девонское. Оно началось примерно 374 млн. лет назад, и привело к вымиранию почти всех бесчелюстных рыб, панцирных рыб, многих кораллов и других групп живых организмов. Тем не менее первые земноводные выжили, хотя им и понадобился ещё не один миллион лет, чтобы более-менее адаптироваться к жизни на суше.

7) Первые рептилии. Синапсиды.

Начавшийся примерно 360 млн. лет назад и продолжавшийся 60 млн. лет каменноугольный период был очень благоприятен для земноводных. Значительную часть суши покрывали болота, климат был тёплым и влажным. В таких условиях многие земноводные продолжали жить в воде или около неё. Но примерно 340-330 млн. лет назад некоторые из земноводных решили освоить и более сухие места. У них развились более сильные конечности, появились более развитые лёгкие, кожа, наоборот стала сухой, чтобы не терять влагу. Но чтобы действительно длительное время жить далеко от воды, нужно было ещё одно важное изменение, ведь земноводные, как и рыбы, метали икру, и их потомство должно было развиваться в водной среде. И около 330 млн. лет назад появились первые амниоты, т. е. животные, способные откладывать яйца. Оболочка первых яиц была ещё мягкой, а не твёрдой, тем не менее, их уже можно было откладывать на суше, а значит, потомство уже могло появляться вне водоёма, минуя стадию головастиков.

Учёные до сих пор путаются в классификации земноводных каменноугольного периода, а также в том, считать ли некоторые ископаемые виды уже ранними рептилиями, либо всё ещё земноводными, приобретшими лишь некоторые черты рептилий. Так или иначе, эти то ли первые рептилии, то ли рептилоподобные земноводные выглядели примерно так:

Вестлотиана — небольшое животное длиной около 20 см., сочетавшее черты рептилий и земноводных. Жило примерно 338 млн. лет назад.

А затем ранние рептилии разделились, дав начало трём большим группам животных. Палеонтологи выделяют эти группы по строению черепа — по числу отверстий, через которые могут проходить мышцы. На рисунке сверху вниз черепа анапсида , синапсида и диапсида :

При этом анапсидов и диапсидов часто объединяют в группу завропсидов . Казалось бы, отличие совершенно незначительное, тем не менее, дальнейшая эволюция этих групп пошла совершенно разными путями.

От завропсидов произошли более продвинутые рептилии, включая динозавров, а затем птицы. Синапсиды же дали начало ветви звероподобных ящеров, а затем и млекопитающим.

300 млн. лет назад начался Пермский период. Климат стал более сухим и холодным и на суше стали доминировать ранние синапсиды — пеликозавры . Одним из пеликозавров был Диметродон, имевший в длину до 4х метров. На спине у него был большой «парус», который помогал регулировать температуру тела: быстро охладиться при перегреве или, наоборот, быстро согреться, подставив спину солнцу.

Считается, что огромный диметродон является предком всех млекопитающих, а значит, и человека.

8) Цинодонты. Первые млекопитающие.

В середине Пермского периода от пеликозавров происходят терапсиды, больше уже похожие на зверей, чем на ящеров. Выглядели терапсиды примерно так:

Типичный терапсид Пермского периода

В течение Пермского периода возникло много видов терапсид, больших и маленьких. Но 250 млн. лет назад происходит мощный катаклизм. Из-за резкого усиления вулканической активности температура повышается, климат становится очень сухим и жарким, большие площади суши заливает лава, а атмосферу наполняют вредные вулканические газы. Происходит Великое Пермское вымирание, самое масштабное в истории Земли массовое вымирание видов, вымирают до 95% морских и около 70% сухопутных видов. Из всех терапсид выживает лишь одна группа — цинодонты .

Цинодонты были животными преимущественно небольшого размера, от нескольких сантиметров до 1-2 метров. Среди них были как хищники, так и травоядные.

Циногнат — вид хищных цинодонтов, живших около 240 млн. лет назад. Был в длину около 1.2 метра, один из возможных предков млекопитающих.

Однако, после того, как климат наладился, цинодонтам было не суждено захватить планету. Диапсиды перехватили инициативу — от мелких рептилий произошли динозавры, которые вскоре заняли большинство экологических ниш. Цинодонты не могли с ними тягаться, они измельчали, им пришлось прятаться в норах и выжидать. Реванш удалось взять нескоро.

Однако цинодонты выживали, как могли, и продолжали эволюционировать, всё больше становясь похожими на млекопитающих:

Эволюция цинодонтов

Наконец, от цинодонтов произошли первые млекопитающие. Они были маленькими и вели, предположительно, ночной образ жизни. Опасное существование среди большого количества хищников способствовало сильному развитию всех органов чувств.

Одним из первых настоящих млекопитающих считается Мегазостродон.

Мегазостродон жил примерно 200 млн. лет назад. Его длина была всего около 10 см. Мегазостродон питался насекомыми, червями и другими мелкими животными. Вероятно, он или другой похожий зверёк и был предком всех современных млекопитающих.

Дальнейшую эволюцию — от первых млекопитающих до человека — мы рассмотрим в .

Последние материалы сайта