Энтропия. Второй закон термодинамики. Необратимые процессы

15.10.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Самопроизвольные (спонтанные) процессы описываются следующими характеристиками:

1. Все природные самопроизвольные процессы протекают в одном направлении, т. е. имеют одностороннее направление. Например, тепло от горячего тела переходит к холодному; газы стремятся занять наибольший объём.

2. Часть энергии переходит в теплоту, т. е. система из упорядоченного состояния переходит в состояние с беспорядочным тепловым движением частиц.

3. Самопроизвольные процессы можно использовать для получения полезной работы. По мере превращения система теряет способность производить работу. В конечном состоянии равновесия она имеет наименьший запас энергии.

4. Систему нельзя вернуть в исходное состояние, не производя каких-либо изменений в ней самой или в окружающей среде. Все самопроизвольные процессы термодинамически необратимы.

5. В самопроизвольном процессе начальное состояние является менее вероятным по сравнению с каждым последующим и наименее вероятным по сравнению с конечным.

Несамопроизвольные процессы протекают при затрате работы; при этом система удаляется от состояния равновесия (например, сжатие газа, электролиз).

Второй закон термодинамики - это постулат. Он имеет статистический характер и применим к системам из большого числа частиц.

Второй закон термодинамики имеет следующие формулировки:

1. Теплота не может переходить самопроизвольно от менее нагретого тела к более нагретому.

2. Невозможен процесс, единственным результатом которого является превращение теплоты в работу.

3. Вечный двигатель второго рода невозможен. Теплота, наиболее холодного из участвующих в процессе тел, не может служить источником работы.

Аналитическое выражение второго закона термодинамики и его обоснование с использованием цикла Карно . Суть выражения второго закона термодинамики - связь самопроизвольности процесса с ростом энтропии.Это выражение вытекает из рассмотрения вопроса о теоретической полноте превращения теплоты в работу в обратимом цикле Карно.

Цикл состоит из четырех процессов:

АВ - изотермическое расширение за счет теплоты Q 1, подведенной к газу при температуре Т 1 ;

ВС - адиабатическое расширение;

СД - изотермическое сжатие при температуре Т 2 , в этом процессе газ теряет теплоту Q 2 ;

ДА - адиабатическое сжатие до исходного состояния.

Теплота, поглощаемая (или выделяемая) при изотермическом расширении (или сжатии) одного моль идеального газа, равна работе

При адиабатическом расширении (или сжатии)

Применение этих уравнений к соответствующим процессам цикла приводит к выражению для термодинамического коэффициента полезного действия (к.п.д.): . (4.3)


Уравнение (4.3) является математическим выражением второго закона термодинамики.

Так как T 1 T 2 , то η ‹ 1.

Согласно теории Карно замена идеального газа любым другим веществом не приведет к изменению к.п.д. цикла Карно. Замена цикла Карно любым другим циклом приведет к меньшему к.п.д. (теорема Клазиуса-Карно). Таким образом, даже в случае идеальной тепловой машины превращение теплоты в работу не может быть полным.

Выражение второго закона термодинамики позволяет ввести понятие энтропии, с помощью которой сущность закона раскрывается в удобной и общей форме.

Изменим выражение (4.3):

на . (4.4)

Отношение называется приведенной теплотой. Уравнение (4.4) показывает, что алгебраическая сумма приведенных теплот по обратимому циклу Карно равна нулю.

Для бесконечно малого обратимого цикла Карно

где - элементарная приведенная теплота.

Любой цикл может быть заменен совокупностью бесконечно малых циклов Карно: .

В пределе эта сумма превратится в .

В теории интегралов доказывается, что если интеграл по замкнутому контуру равен нулю, то подинтегральное выражение есть полный дифференциал некоторой функции от параметров, определяющих состояние системы.

где S - это энтропия , такая функция состояния системы, полный дифференциал которой в обратимом процессе равен отношению бесконечно малого количества теплоты к температуре.

Понятие «энтропия» введено Клаузиусом (1850). Это выражение является математическим выражением второго закона термодинамики для обратимых процессов.

Изменение энтропии в обратимом процессе равно изменению энтропии в необратимом процессе, т.е. . Сравним теплоты обратимого и необратимого процессов. Согласно первому закону термодинамики . Внутренняя энергия U - это функция состояния системы, поэтому . Максимальная работа совершается при обратимом процессе, поэтому

В общем случае для обратимого и необратимого процессов второй закон термодинамики имеет следующее математическое выражение:

Здесь dS = const , а изменяется только правая часть уравнения, т.е. значение величины теплоты. Единицы измерения энтропии: [S ] = Дж/моль·К.

Объединенное уравнение первого и второго закона термодинамики:

Расчет изменения энтропии идеального газа.

Выразим изменение внутренней энергии

Разделив уравнение (4.6) на Т , определим изменение энтропии:

(4.7)

Из уравнения идеального газа: следует, что . Тогда, после подстановки этого соотношения в (4.7):

(4.8)

Проинтегрируем выражение (4.8) при и получим уравнение для расчета изменения энтропии идеального газа:

(4.9)

Изотермический процесс , : , (4.10)

так как , то . (4.11)

Изохорический процесс, : . (4.12)

Изобарический процесс, : . (4.13)

Адиабатический процесс, : . (4.14)

Постулат Планка имеет следующую формулировку: при абсолютном нуле энтропия правильно образованных кристаллов чистых веществ равна нулю. Постулат позволяет рассчитать абсолютное значение энтропии, если известны теплоты фазовых переходов, и если известны теплоёмкости вещества в различных агрегатных состояниях.

Второй закон термодинамики. Энтропия.

Второй закон связан с понятием энтропии, являющейся мерой хаоса (или мерой порядка). Второй закон термодинамики гласит, что для вселенной в целом энтропия возрастает.

Существует два классических определения второго закона термодинамики:

  • Кельвина и Планка

  • Не существует циклического процесса, который извлекает количество теплоты из резервуара при определенной температуре и полностью превращает эту теплоту в работу. (Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме поднятия груза и охлаждения резервуара теплоты)

  • Клаузиуса
  • Не существует процесса, единственным результатом которого является передача количества теплоты от менее нагретого тела к более нагретому. (Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара)

Оба определения второго закона термодинамики опираются на первый закон термодинамики, утверждающий, что энергия убывает.

Второй закон связан с понятием энтропии (S) .

Энтропия порождается всеми процессами, она связана с потерей системы способности совершать работу. Рост энтропии - стихийный процесс. Если объем и энергия системы постоянны, то любое измение в системе увеличивает энтропию. Если же объем или энергия системы меняются, энтропия системы уменьшается. Однако, энтропия вселенной при этом не уменьшается.

Для того, чтобы энергию можно было использовать, в системе должны быть области с высоким и низким уровнями энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.

  • 100% энергии не может быть преобразовано в работу
  • Энтропия может вырабатываться, но не может быть уничтожена

Эффективность теплового двигателя

Эффективность теплового двигателя, действующего между двумя энергетическими уровнями, определена в пересчете на абсолютные температуры

η = (T h - T c) / T h = 1 - T c / T h

η = эффективность

T c = нижняя граница температуры (K)

Для того, чтобы достичь максимальной эффективности T c должна быть на столько низкой, на сколько это возможно. Чтобы эффект был 100% -м, T c должна равнятся 0 по шкале Kельвина. Практически это невозможно, поэтому эффективность всегда меньше 1 (менее 100%).

  • Изменение энтропии > 0
    Необратимый
    процесс
  • Изменение энтропии= 0
    Двусторонний
    процесс (обратимый)
  • Изменение энтропии < 0
    Невозможный
    процесс (неосуществимый)

Энтропия определяет относительную способность одной системы влиять на другую. Когда энергия двигается к нижнему энергетическому уровню, где уменьшается возможность влияния на окружающую среду, энтропия увеличивается.

Определение энтропии

Энтропия определяется как:

T = абсолютная температура (K)

Изменение энтропии системы вызвано изменением содержания темпла в ней. Изменение энтропии равно изменению темпла системы деленной на среднюю абсолютную температуру (T a):

Сумма значений (H / T) для каждого полного цикла Карно равна 0. Это происходит из-за того, что каждому положительному H противостоит отрицательное значение H.

  • Тепловой цикл Карно

Цикл Карно— идеальный термодинамический цикл.

В тепловом двигателе, газ (реверсивно) нагревается (reversibly heated), а затем охлаждается. Модель цика следующая: Положение 1 --() --> Положение 2 --() --> Положение 3 --(изотермическое сжатие) --> Положение 4 --(адиабатическое сжатие) --> Положение 1

Положение 1 - Положение 2: Изотермическое расширение
Изотермическое расширение. В начале процесса рабочее тело имеет температуру T h , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Q H . При этом объём рабочего тела увеличивается. Q H =∫Tds=T h (S 2 -S 1) =T h ΔS
Положение 2 - Положение 3: Адиабатическое расширение
Адиабатическое (изоэнтропическое) расширение. Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.
Положение 3 - Положение 4: Изотермическое сжатие
Изотермическое сжатие. Рабочее тело, имеющее к тому времени температуру T c , приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты Q c . Q c =T c (S 2 -S 1)=T c ΔS
Положение 4 - Положение 1: Адиабатическое сжатие
Адиабатическое (изоэнтропическое) сжатие. Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия.

Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).

Законы термодинамики были определены эмперическим путем (эксперементально). Второй закон термодинамики - это обощение экспериментов, связанных с энтропией. Известно, что dS системы плюс dS окружающей среды равно или больше 0.

  • Энтропия адиабатически изолированной системы не меняется!

Пример - Энтропия при нагревании воды

Процесс нагревания 1 кг воды от 0 до 100 o C (273 до 373 K)

При 0 o C = 0 кДж/кг (удельная - на единицу массы)

При 100 o C = 419 кДж/кг

Изменение удельной энтропии:

dS = dH / T a

= ((419 кДж/кг) - (0 кДж/кг)) / ((273 К + 373 К)/2)

= 1.297 кДж/кг*К

Пример - Энтропия при испарении воды

Процесс превращения 1 кг воды при 100 o C (373 K) в насыщенный пар при 100 o C (373 K) при нормальных условиях.

Удельная энтальпия пара при 100 o C (373 K) до испарения = 0 кДж/кг

100 o C (373 K) при испарении = 2 258 кДж/кг

Изменение удельной энтропии:

dS = dH / T a

= (2 258 - 0) / ((373 + 373)/2)

= 6.054 кДж/кг*К

Полное изменение удельной энтропии испарения воды - это сумма удельной энтропии воды (при 0 o C) плюс удельная энтропия пара (при температуре 100 o C).

Физическая химия: конспект лекций Березовчук А В

5. Процессы. Второй закон термодинамики

Второй закон термодинамики, в отличие от первого закона термодинамики, изучает все процессы, которые протекают в природе, и эти процессы можно классифицировать следующим образом.

Процессы бывают самопроизвольные, несамопроизвольные, равновесные, неравновесные.

Самопроизвольные процессы делятся на обратимые и необратимые. Второй закон термодинамики называют законом направленности процесса в изолированной системе (закон роста S). Слово «энтропия» создано в 1865 г. Р. Ю. Э. Клаузиусом – «тропе» с греческого означает превращение. В 1909 г. профессор П. Ауербах назвал царицей всех функций внутреннюю энергию, а S тенью этой царицы. Энтропия – мера неупорядоченности системы.

Обратимые и необратимые процессы

Необратимые процессы идут без затраты работы, протекают самопроизвольно лишь в одном направлении, это такие изменения состояния в изолированной системе, когда при обращении процессов свойства всей системы меняются. К ним относятся:

1) теплопроводность при конечной разности температур;

2) расширение газа при конечной разности давлений;

3) диффузия при конечной разности концентраций.

Обратимыми процессами в изолированной системе называются такие процессы, которые можно обратить без каких-либо изменений в свойствах этой системы.

Обратимые: механические процессы в системе, где отсутствует трение (идеальная жидкость, ее движение, незатухающие колебания маятника в вакууме, незатухающие электромагнитные колебания и распространение электромагнитных волн там, где нет поглощения), которые могут возвратиться в начальное состояние.

Самопроизвольные – процессы, которые идут сами собой, на них не затрачивается работа, они сами могут производить ее (движение камней в горах, Na с большой скоростью движется по поверхности, так как идет выделение водорода проверить.).

Несамопроизвольные

Равновесие делится на устойчивое, неустойчивое и безразличное .

1. Постулат Клаузиуса – не может быть перехода тепла от менее нагретого к более нагретому телу.

2. Постулат Томсона – теплота наиболее холодного тела не может служить источником работы.

Теорема Карно – Клаузиуса: все обратимые машины, совершающие цикл Карно с участием одного и того же нагревателя и одного и того же холодильника, имеют одинаковый коэффициент полезного действия, независимо от рода рабочего тела.

Q 1 /Т 1 –

Q 2 / T 2 –

Q 1 /Т 1 = Q 2 /Т 2 –

Это четвертое уравнение второго закона термодинамики Если процесс является замкнутым, то

При необратимом процессе:

Это шестое уравнение второго закона термодинамики, или уравнение Клаузиуса, для обратимого процесса равно нулю, для необратимого процесса оно меньше 0, но иногда может быть больше 0.

S.

S = k lnW.

Действие, обратное логарифму – потенцирование :

Первый закон термодинамики определяется постоянством функции U в изолированной системе. Найдем функцию, выражающую содержание второго закона, а именно, одностороннюю направленность протекающих в изолированной системе процессов. Изменение искомой функции должно иметь для всех реальных, т. е. необратимых процессов, протекающих в изолированных системах, один и тот же знак. Второй закон термодинамики в приложении к некруговым необратимым процессам должен выражатся неравенством. Вспомним Цикл Карно. Так как любой цикл можно заменить бесконечно большим числом бесконечно малых циклов Карно, то выражение:

справедливо для любого обратимого цикла. Считая на каждом элементарном участке теплообмена Т = const, найдем, что:

и для всего цикла

Энергия Гельмгольца Изохорно-изотермический потенциал

F = U – TS

Величина (V – TS ) является свойством системы; она называется энергией Гельмгольца . Была введена Гельмгольцем в 1882 г.

dF = dU – TdS – SdT,

U = F + TS,

dF = TdS – pdV – SdT,

F – полный дифференциал.

Увеличение объема приводит к тому, что изохорно-изотермический потенциал уменьшается (тот «минус», который стоит перед Р). Повышение температуры приводит к тому, что F уменьшается.

?А равн > ?А неравн

Q = ?U + A,

A = Q – ?U,

A = T(S 2 – S 1) – (U 2 – U 1),

А = F 1 – F 2 = – ?F,

А равн = – ?F –

физический смысл изохорно-изотермического потенциала.

Убыль изохорно-изотермического потенциала равна максимальной работе, производимой системой в этом процессе; F – критерий направленности самопроизвольного процесса в изолированной системе . Для самопроизвольного процесса: AF T г < 0.

Для несамопроизвольного процесса: ?F T,V > 0. Для равновесного процесса: ?F T,V = 0.

?F V,T ? 0.

Изохорно-изотермический потенциал в самопроизвольных процессах уменьшается и, когда он достигает своего минимального значения, то наступает состояние равновесия (рис. 4).

Рис. 4

2 – несамопроизвольный процесс;

3 – равновесный процесс.

Изобарно-изотермический потенциал .

1) G (P, Т= cоnst), энергия Гиббса

G = U – TS + PV = H – TS = F + PV,

?Q = dU – Pdv + A?,

?A? = Q – dU – pdv,

?A? max = T(S 2 – S 1) – (U 2 – U 1) – p(V 2 – V 1),

?A? max = (U 1 – TS 1 + PV 1) – (U 2 – TS 2 + PV 2) = G 1 – G 2 = – ?G,

U – TS + pV = G,

A? max = – ?G.

Работа изобарно-изотермического процесса равна убыли изобарно-изотермического потенциала – физический смысл этой функции;

2) функция – полный дифференциал, однозначна, конечна, непрерывна.

G = U – TS + pV,

dG = dU – TdS – SdT + pdv + vdp,

dG = TdS – pdV – TdS – SdT + pdv + vdp,

dG = –SdT + Vdp,

Повышение температуры приводит к тому, что изобарно-изотермический потенциал уменьшается, так как перед S стоит знак «минус». Повышение давления приводит к тому, что изобарно-изотермический потенциал увеличивается, так как перед V стоит знак «плюс»;

3) G как критерий направленности процесса в изолированной системе.

Для самопроизвольного процесса: (?G ) P,T < 0. Для несамопроизвольного процесса: (?G ) P,T > 0. Для равновесного процесса: (?G) P,T = 0

?G (P, T) ? 0.

Изобарно-изотермический потенциал в самопроизвольных процессах уменьшается, и, когда он достигает своего минимума, то наступает состояние равновесия.

Рис. 5

где 1 – самопроизвольный процесс;

2 – равновесный процесс;

3 – несамопроизвольный процесс.

Совершается работа за счет?U и?H .

Противодействующие факторы. Энтальпийный фактор характеризует силу притяжения молекул. Энтропийный фактор характеризует стремление к разъединению молекул.

Энтальпия – Н Внутренняя энергия – U.

H = U + PV,

dH = dU + pdv + vdp,

U = TS – PV,

dU = TdS – SdT + pdV + Vdp,

dH = –pdV + pdV + Vdp; U = TdS + VdP.

Рис. 6

где 1 – самопроизвольный процесс,

2 – несамопроизвольный процесс,

3 – равновесный процесс,

(dH) P,T ? 0,

(dU) S,T ? 0.

Уравнения Гиббса – Гельмгольца – уравнения максимальной работы .

Они позволяют установить связь между максимальной работой равновесного процесса и теплотой неравновесного процесса

уравнение Гельмгольца (уравнение связывающее функции F и G

уравнение Гиббса (уравнение связывающее функции F и G с их температурными производными).

Уравнение Клаузиуса-Клапейрона

Оно позволяет применить второй закон термодинамики к фазовым переходам. Если рассчитать процессы, в которых совершается только работа расширения, то тогда изменение внутренней энергии

U 2 – U 1 = T(S 2 – S 1) – P(V 2 – V 1),

(U 1 – TS 1 + PV 1) = (U 2 – TS 2 + PV 2),

G 1 = G 2 – в условиях равновесия.

Предположим, что 1 моль вещества переходит из первой фазы во вторую.

I фаза => dG 1 = V 1 dp – S 1 dT.

II фаза => dG 2 = V 2 dp – S 2 dT, при равновесии dG 2 – dG 1 = 0

dG 2 – dG 1 = dp(V 2 – V 1) – dT(S 2 – S1) –

нет условного равновесия,

где dP/dT – температурный коэффициент давления,

где ? фп – теплота фазового перехода.

уравнение Клаузиуса-Клапейрона, дифференциальная форма уравнения.

Уравнение устанавливает взаимосвязь между теплотой фазового перехода, давлением, температурой и изменением молярного объема.

эмпирическая форма уравнения Клаузиуса-Клапейрона.

Рис. 7

Рис. 8

Уравнение Клаузиуса-Клапейрона изучает фазовые переходы. Фазовые переходы могут быть I рода и II рода.

I рода – характеризуются равенством изобарных потенциалов и скачкообразными изменениями S и V.

II рода – характеризуются равенством изобарных потенциалов, равенством энтропий и равенством молярных объемов.

I рода – ?G = 0, ?S ? 0, ?V ? 0.

II рода – ?G = 0, ?S = 0, ?V = 0.

Алгебраическая сумма приведенных теплот для любого обратимого кругового процесса равна нулю.

Эта подынтегральная величина – дифференциал однозначной функции состояния. Эта новая функция была введена Клаузиусом в 1865 г. и названа энтропией – S (от греч. «превращение»).

Любая система в различном состоянии имеет вполне определенное и единственное значение энтропии, точно так же, как определенное и единственное значение Р, V, T и других свойств.

Итак, энтропия выражается уравнением:

где S – это функция состояний, изменение которой dSв обратимом изотермическом процессе перехода теплоты в количество Q равно приведенной теплоте процесса.

При независимых переменных U (внутренняя энергия) может обозначаться U ВН и V (объем), или Р (давление) и Н (энтальпия). Энтропия является характеристической функцией. Характеристические функции – функции состояния системы, каждая из которых при использовании ее производных дает возможность выразить в явной форме другие термодинамические свойства системы. Напомним, в химической термодинамике их пять:

1) изобарно-изотермический потенциал (энергия Гиббса) при независимых переменных Т, Р и числе молей каждого из компонентов и. ;

2) изохорно-изотермический потенциал (энергия Гельмгольца) при независимых переменных Т, V, n i ;

3) внутренняя энергия при независимых переменных: S, V, n i ;

4) энтальпия при независимых переменных: S, Р, п i ;

5) энтропия при независимых переменных Н, Р, n i . .

В изолированных системах (U и V= const) при необратимых процессах энтропия системы возрастает, dS > 0; при обратимых – не изменяется, dS = 0.

Связь энтропии с другими термодинамическими параметрами

Для того, чтобы решить конкретную задачу, связанную с применением энтропии, надо установить зависимость между ней и другими термодинамическими параметрами. Уравнение dS = ?Q/T в сочетании с?Q = dU + PdV и?Q = dH – VdP дает уравнения:

dU = TdS – PdV,

dH = TdS + VdP.

Записав уравнение:

применительно к функциональной зависимости ?(Т, V, S) = 0, получим

Теперь найдем зависимость энтропии от температуры из уравнений:

Вот эти зависимости:

Эти два уравнения являются практически наиболее важными частными случаями общего соотношения:

TdS = CdT.

Пользуясь разными зависимостями, можно вывести другие уравнения, связывающие термодинамические параметры.

Самопроизвольные – процессы, которые идут сами собой, на них не затрачивается работа, они сами могут производить ее (движение камней в горах, натрий с большой скоростью движется по поверхности, так как идет выделение водорода), а калий буквально «прыгает» по воде.

Несамопроизвольные – процессы, которые не могут идти сами собой, на них затрачивается работа.

Равновесие делится на устойчивое, неустойчивое и безразличное.

Постулаты второго закона термодинамики.

1. Постулат Клаузиуса – «Не может быть перехода тепла от менее нагретого к более нагретому телу».

2. Постулат Томсона – «Теплота наиболее холодного тела не может служить источником работы».

Теорема Карно-Клаузиуса: «Все обратимые машины, совершающие цикл Карно с участием одного и того же нагревателя и одного и того же холодильника, имеют одинаковый коэффициент полезного действия, независимо от рода рабочего тела».

Аналитические выражения второго закона термодинамики.

1. Классическое уравнение второго закона термодинамики

где Q /Т – приведенное тепло;

Q 1 /Т 1 – приведенное тепло нагревателя;

Q 2 / T 2 – приведенное тепло холодильника;

Q 1 /Т 1 = Q 2 / T 2 – равенство приведенных теплот нагревателя и холодильника. Это второе уравнение термодинамики.

Если делим адиабатами на множество циклов Карно, то получим

Это третье уравнение второго закона термодинамики для бесконечно малого цикла Карно.

Если процесс является конечным, то

Это четвертое уравнение второго закона термодинамики

Если процесс является замкнутым, то

Это пятое уравнение второго закона термодинамики для обратимого процесса.

Интеграл по замкнутому контуру – интеграл Клаузиуса.

При необратимом процессе:

шестое уравнение второго закона термодинамики, или уравнение Клаузиуса, для обратимого процесса равно нулю, для необратимого процесса оно меньше 0, но иногда может быть больше 0.

это седьмое уравнение второго закона термодинамики. Второй закон термодинамики – закон роста S.

S = k lnW.

S = k lnW –

это формула Больцмана,

где S – энтропия – степень разупорядоченности системы;

k– постоянная Больцмана;

W – термодинамическая вероятность системы макросостояний.

Термодинамическая вероятность – число микросостояний данной системы, с помощью которых можно реализовать данное макросостояние системы (Р, Т, V).

Если W = 1, то S = 0, при температуре абсолютного нуля –273°С все виды движений прекращаются.

Термодинамическая вероятность – это число способов, которыми атомы и молекулы можно распределить в объеме.

Из книги Медицинская физика автора Подколзина Вера Александровна

25. Второе начало термодинамики. Энтропия Существует несколько формулировок второго закона термодинамики: теплота сама собой не может переходить от тела с меньшей температурой к телу с большей температурой (формулировка Клаузиуса), или невозможен вечный двигатель

Из книги Физическая химия: конспект лекций автора Березовчук А В

29. Физические процессы в биологических мембранах Важной частью клетки являются биологические мембраны. Они отграничивают клетку от окружающей среды, защищают ее от вредных внешних воздействий, управляют обменом веществ между клеткой и ее окружением, способствуют

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

3. Первый закон термодинамики. Калорические коэффициенты. Связь между функциями CP и Cv Формулировки первого закона термодинамики.1. Общий запас энергии в изолированной системе остается постоянным.2. Разные формы энергии переходят друг в друга в строго эквивалентных

Из книги Атомная энергия для военных целей автора Смит Генри Деволф

2. Электродные процессы Электродные процессы – процессы, связанные с переносом зарядов через границу между электродом и раствором. Катодные процессы связаны с восстановлением молекул или ионов реагирующего вещества, анодные – с окислением реагирующего вещества и с

Из книги Курс истории физики автора Степанович Кудрявцев Павел

3. Катодные и анодные процессы в гальванотехнике Основными процессами в гальванотехнике являются восстановление и снижение.На Kat – восстановление, где Kat – катод. На An – снижение, где An – анод.Электролиз H2O: Катодные реакции Последняя реакция протекает свыделением

Из книги История лазера автора Бертолотти Марио

4. Стохастические процессы и самоорганизующиеся системы Стохастические процессы и самоорганизующиеся системы являются предметом изучения электрохимической синергетики. Такие процессы имеют место во всех областях: переход от ламинарного к турбулентному процессу,

Из книги Вечный двигатель - прежде и теперь. От утопии - к науке, от науки - к утопии автора Бродянский Виктор Михайлович

ЛЕКЦИЯ № 15. Третий закон термодинамики Понятие химического сродства. Известно, что многие вещества реагируют друг с другом легко и быстро, другие вещества реагируют с трудом, а третьи – не реагируют. Исходя из этого, вывели предположение, что между веществами существует

Из книги 4. Кинетика. Теплота. Звук автора Фейнман Ричард Филлипс

Из книги Механика от античности до наших дней автора Григорьян Ашот Тигранович

КАСКАДНЫЕ И КОМБИНИРОВАННЫЕ ПРОЦЕССЫ 9.32. Во всех статистических методах разделения изотопов для получения вещества, содержащего 90 % или больше U-235 или дейтерия, необходимо много последовательных ступеней разделения. Если поток движется непрерывно от одной ступени к

Из книги автора

Возникновение и развитие термодинамики. Карно Если в XVIII в. в физике (за исключением механики) господствовал эксперимент, так что физику определяли как науку «о всем том, что через опыты познать можно», то в XIX в. картина начинает меняться. Экспериментальная физика

Из книги автора

Второе начало термодинамики Прогресс теплотехники не только стимулировал открытие закона сохранения и превращения энергии, но и двинул вперед теоретическое изучение тепловых явлений. Уточнялись основные понятия, создавалась аксиоматика теории теплоты,

Из книги автора

Второй твердотельный лазер В сентябре 1959 г. Таунс организовал конференцию «Квантовая электроника - резонансные явления», на которой, хотя лазер еще не был создан, большинство неформальных дискуссий концентрировалось на лазерах.В этой конференции приняли участие Петер

Из книги автора

Глава третья. ИДЕЯ ppm-2 и ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ У кого не уяснены принципы во всей логической полноте и последовательности, у того не только в голове сумбур, но и в делах чепуха. Н. Г.

Из книги автора

Из книги автора

Глава 45 ПРИМЕРЫ ИЗ ТЕРМОДИНАМИКИ § 1. Внутренняя энергия§ 2. Применения§ 3. Уравнение Клаузиуса –Клайперона§ 1. Внутренняя энергияКогда приходится использовать термоди­намику для дела, то оказывается, что она очень трудный и сложный предмет. В этой книге, однако, мы не

Из книги автора

IX. МЕХАНИКА В РОССИИ ВО ВТОРОЙ ПОЛОВИНЕ XIX-НАЧАЛЕ XX


Министерство образования и науки Российской Федерации

Государственной образовательное учреждение высшего профессионального образования

Ивановский государственный химико-технологический университет

Кафедра Технологии пищевых продуктов и биотехнологии (ТППиБТ)

Реферат

по дисциплине «Техническая термодинамика и теплотехника»

II -ой закон термодинамики или «Тепловая смерть Вселенной»

Выполнил:

студент 3 курса

Ивлев Павел Андреевич

Руководитель:

к т н, доцент, кафедры ПиАХТ

Маркичев Николай Аркадьевич

Иваново 2010 г.

Введение__________________________________________________________________ 3

Часть 1. Второй закон термодинамики.

1.1. Второй закон термодинамики. Характеристика и формулировка._______________4

Часть 2. Энтропия

2.1. Понятие энтропии.______________________________________________________5

2.2. Закон возрастания энтропии. Вывод закона возрастания энтропии.______________5

2.3 Возможность энтропии во Вселенной.______________________________________6

Часть 3. Теория «тепловой смерти» Вселенной

3.1. Появление идеи Теории «тепловой смерти» Вселенной._______________________8

3.2. Взгляд на Теорию «тепловой смерти» Вселенной из ХХ века.__________________9

3.3 «За» и «против» Теории «тепловой смерти» Вселенной_______________________10

Заключение_______________________________________________________________16

Список, использованной в работе литературы __________________________________17

Введение:

В данной работе поднимаеться проблема о будущем нашей Вселенной. О будущем очень далеком, настолько, что неизвестно, наступит ли оно вообще. Жизнь и развитие науки существенно меняют наши представления и о Вселенной, и об ее эволюции, и о законах, управляющих этой эволюцией. В самом деле, существование черных дыр было предсказано еще в XVIII веке. Но лишь во второй половине XX столетия их стали рассматривать как гравитационные могилы массивных звезд и как места, куда может навечно «провалиться» значительная часть вещества, доступного наблюдениям, выбывая из общего круговорота. А позже стало известно, что черные дыры испаряются и, таким образом, возвращают поглощенное, хотя совсем в другом обличие. Новые идеи постоянно высказываются космофизиками. Поэтому картины, нарисованные еще совсем недавно, неожиданно оказываются устаревшими.

Одним из наиболее дискуссионных вот уже около 100 лет является вопрос о возможности достижения равновесного состояния во Вселенной, что эквивалентно понятию ее «тепловой смерти», причиной которой являеться Второй закон термодинамики и истекающие из него выводы.

Часть1. Второй закон термодинамики

      Второй закон термодинамики. Характеристика и формулировка:

Естественные процессы всегда направлены в сторону достижения системой равновесного состояния (механического, термического или любого другого). Это явление отражено вторым законом термодинамики, имеющим большое значение и для анализа работы теплоэнергетических поцессов.

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами. Он гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая невозможность перехода всей внутренней энергии системы в полезную работу.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Существуют формулировоки:

- передача теплоты от холодного источника к горячему невозможна без затраты работы;

- невозможно построить периодически действующую машину, совершающую работу и соответственно охлаждающую тепловой резервуар;

- природа стремится к переходу от менее вероятных состояний к более вероятным.

Следует подчеркнуть, что второй закон термодинамики (так же как и первый), сформулирован на основе опыта. В наиболее общем виде второй закон термодинамики может быть сформулирован следующим образом: любой реальный самопроизвольный процесс является необратимым. Все прочие формулировки второго закона являются частными случаями наиболее общей формулировки:

невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более теплым (постулат Клаузиуса, 1850 г.).

В.Томсон (лорд Кельвин) предложил в 1851 г. следующую формулировку: невозможно при помощи неодушевленного материального агента получить от какой-либо массы вещества механическую работу посредством охлаждения ее ниже температуры самого холодного из окружающих предметов.

М.Планк предложил формулировку более четкую, чем формулировка Томсона: невозможно построить периодически действующую машину, все действие которой сводилось бы к понятию некоторого груза и охлаждению теплового источника.

Часть 2. Энтропия

2.1 Понятие энтропии.

Несоответствие между превращением теплоты в работу и работы в теплоту приводит к односторонней направленности реальных процессов в природе, что и отражает физический смысл второго начала термодинамики в законе о существовании и возрастании в реальных процессах некой функции, названной энтропией , определяющей меру обесценения энергии.

Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии.

Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях обратимого течения процессов:

Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов:

.

Оба вывода о существовании и возрастании энтропии получаются на основе какого-либо постулата, отражающего необратимость реальных процессов в природе. Наиболее часто в доказательстве объединенного принципа существования и возрастания энтропии используют постулаты Р.Клаузиуса, В.Томпсона-Кельвина, М. Планка

2.2. Закон возрастания энтропии. Вывод закона возрастания энтропии.

Применим неравенство Клаузиуса для описания необратимого кругового термодинамического процесса, изображенного на рис 1.

Рисунок 1. Необратимый круговой термодинамический процесс

Пусть процесс 1-2 будет необратимым, а 2-1 процесс - обратимым. Тогда неравенство Клаузиуса для этого случая примет вид

Так как процесс 2-1 является обратимым, тогда

Подстановка этой формулы в неравенство (1) позволяет получить выражение

Сравнение выражений (1) и (2) позволяет записать следующее неравенство

в котором знак равенства имеет место в случае, если процесс 1-2 является обратимым, а знак больше, если процесс 1-2 - необратимый.

Неравенство (3) может быть также записано и в дифференциальной форме

Если рассмотреть адиабатически изолированную термодинамическую систему, для которой, то выражение (4) примет вид

или в интегральной форме

Полученные неравенства выражают собой закон возрастания энтропии, который можно сформулировать следующим образом:

В адиабатически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

2.3 Возможность энтропии во Вселенной

В адиабтически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия.

Необходимо отметить, что если система не является изолированной, то в ней возможно уменьшение энтропии. Примером такой системы может служить, например, обычный холодильник, внутри которого возможно уменьшение энтропии. Но для таких открытых систем это локальное понижение энтропии всегда компенсируется возрастанием энтропии в окружающей среде, которое превосходит локальное ее уменьшение.

С законом возрастания энтропии непосредственно связан парадокс, сформулированный в 1852 году Томсоном (лордом Кельвином) и названый им гипотезой тепловой смерти Вселенной. Подробный анализ этой гипотезы был выполнен Клаузиусом, который считал правомерным распространение на всю Вселенную закона возрастания энтропии. Действительно, если рассмотреть Вселенную как адиабатически изолированную термодинамическую систему, то, учитывая ее бесконечный возраст, на основании закона возрастания энтропии можно сделать вывод о достижении ею максимума энтропии, то есть состояния термодинамического равновесия. Но в реально окружающей нас Вселенной этого не наблюдается.

Часть 3. Теория «тепловой смерти» Вселенной.

Тепловая смерть Вселенной (Т.С.В.) - это вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы.

Этот вывод был сформулирован Р. Клаузиусом (1865) на основе второго начала термодинамики. Согласно второму началу, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию - к так называемому состоянию с максимумом энтропии. ... , «Аналитики» (I и II ) и др.; 3) ... закон исключенного тетьего (А или не – А, т.е. или А истинно, или ... очки" ... тепловой смерти Вселенной . Неуничтожимость материи нельзя понимать только в количественном отношении. Законы ... законы Кеплера, законы термодинамики , законы ...

  • Коцепции физики

    Реферат >> Физика

    Гидростатика Архимеда (III- II в. до н.э.) ... XIII веке очков , но... или начал, являющихся обобщением результатов многочисленных наблюдений и экспериментов. б) Первое начало термодинамики (закон ... формированию концепции "тепловой смерти" вселенной . Ее суть...

  • Второй закон термодинамики - один из основных законов физики, закон о неспадання энтропии в изолированной системе . Он накладывает ограничения на количество полезной работы , которую может осуществить тепловой двигатель . На основополагающем уровне второй закон термодинамики определяет направление протекания процессов в физической системе - от порядка к беспорядка. Существует много различных формулировок второго закона термодинамики, в целом эквивалентных между собой.


    1. Формулировка


    2. Альтернативные формулировки

    Приведенная формулировка очень формальное. Существует очень много альтернативных формулировок второго закона термодинамики. Например, Планк предложил такую ​​формулировку:

    Невозможно построить машину, которая бы работала циклически, охлаждающей же источник тепла или поднимала вверх грузы, не вызывая при этом никаких изменений в природе.

    Невозможно превратить теплоту в работу, не выполняя никакой другой действия кроме охлаждения системы.

    Природа стремится перейти из состояний с меньшей вероятностью реализации в состояния с большей вероятностью реализации.

    Невозможно создать вечный двигатель 2-го рода

    Самопроизвольный переход тепла от менее нагретого к более нагретого невозможен

    Там где есть разница температур там возможно выполнение работы

    Распространены следующие формулировки:

    Невозможно построить вечный двигатель второго рода.

    Невозможно передать тепло от холодного тела к горячему, не затратив при этом энергию.

    Каждая система стремится перейти от порядка к беспорядка.


    3. Историческая справка

    Второй закон термодинамики был сформульваний в середине 19-го века, в те времена, когда создавалась теоретическая основа для конструирования и построения тепловых машин. Опыты Майера и Джоуля установили эквивалентность между тепловой и механической энергиями (первый закон термодинамики). Возник вопрос об эффективности тепловых машин. Экспериментальные исследования свидетельствовали о том, что часть тепла обязательно теряется при работе любой машины.

    В 1850-х, 1860-х годах Клаузиус в ряде публикаций разработал понятие энтропии . В 1865 году он наконец-то выбрал для нового понятия имя. Эти публикации доказали также, что тепло невозможно полностью превратить в полезную работу, сформулировав таким образом второй закон термодинамики.

    Статистическую интерпретацию второму закону термодинамики дал Больцман, введя новое определение для энтропии, которое базировалось на микроскопических атомистических представлениях.


    4. Статистическая интерпретация

    Из статистического определения энтропии очевидно, что рост энтропии соответствует переходу к такому макроскопического состояния, характеризующегося наибольшим значением микроскопических состояний.


    5. Стрела времени

    Если исходное состояние термодинамической системы неравновесное, то со временем она переходит к равновесному состоянию, увеличивая свою энтропию. Этот процесс протекает только в одну сторону. Обратный процесс - переход от равновесного состояния к начальному неравновесного, не реализуется. То есть, течение времени получает направление.

    Законы физики, описывающие микроскопический мир, инвариантные относительно замены t на-t. Данное утверждение справедливо как в отношении законов классической механики, так и законов квантовой механики. В микроскопическом мире действуют консервативные силы, нет трения, которое является диссипацией энергии, т.е. преобразованием других видов энергии в энергию теплового движения, а это в свою очередь связано с законом неспадання энтропии.

    Представим себе, например, газ в резервуаре, помещенном в большую резервуар. Если открыть клапан менее резервуара, то газ через некоторое время заполнит больше резервуар таким образом, что его плотность выровняется. Согласно законам микроскопического мира, существует также и обратный процесс, когда газ из большего резервуара соберется в меньшую резервуар. Но в макроскопическом мире такое никогда не реализуется.


    6. Тепловая смерть

    Если энтропия каждой изолированной системы только увеличивается со временем, а Вселенная изолированной системой, то когда-нибудь энтропия достигнет максимума, после чего любые изменения в нем станут невозможными.

    Такие рассуждения, которые появились после установки второго закона термодинамики, получили название тепловой смерти. Эта гипотеза широко дискутировалась в 19-ом столетии.

    Каждый процесс в мире приводит к рассеиванию части энергии и перехода ее в тепло, ко все большему беспорядка. Конечно, наша Вселенная еще достаточно молод. Термоядерные процессы в звездах вызывающих постоянный потока энергии на Землю, например. Земля есть и еще долго будет оставаться открытой системой, которая получает энергию из различных источников: от Солнца, от процессов радиоактивного распада в ядре т.д.. В открытых системах, энтропия может уменьшаться, что приводит к появлению различных упорядоченных стуктур.

    Последние материалы сайта